Friday, November 28, 2014

Standard RAID levels

The standard RAID levels are a basic set of RAID configurations that employ the techniques of stripingmirroring, or parity to create large reliable data stores from general purpose computer hard disk drives. The most common types today are RAID 0 (striping), RAID 1 and variants (mirroring), RAID 5 (distributed parity) and RAID 6 (dual parity). RAID levels and their associated data formats are standardized by the Storage Networking Industry Association (SNIA) in the Common RAID Disk Drive Format (DDF) standard.

RAID 0[edit]

Diagram of a RAID 0 setup
RAID 0 (also known as a stripe set or striped volume) splits data evenly across two or more disks (striped), without parity information and with speed as the intended goal. RAID 0 was not one of the original RAID levels and provides nodata redundancy. RAID 0 is normally used to increase performance, although it can also be used as a way to create a large logical disk out of two or more physical ones.
A RAID 0 can be created with disks of differing sizes, but the storage space added to the array by each disk is limited to the size of the smallest disk. For example, if a 120 GB disk is striped together with a 320 GB disk, the size of the array will be 240 GB (120 GB × 2).
\begin{align} \mathrm{Size} & = 2 \cdot \min \left( 120\,\mathrm{GB}, 320\,\mathrm{GB} \right) \\
& = 2 \cdot 120\,\mathrm{GB} \\
& = 240\,\mathrm{GB} \end{align}
The diagram shows how the data is distributed into Ax stripes to the disks. Accessing the stripes in the order A1, A2, A3, ... provides the illusion of a larger and faster drive. Once the stripe size is defined on creation it needs to be maintained at all times.

Performance[edit]

RAID 0 is also used in areas where performance is desired and data integrity is not very important, for example in some computer gaming systems. Although some real-world tests with computer games showed a minimal performance gain when using RAID 0, albeit with some desktop applications benefiting,[2][3] another article examined these claims and concluded: "Striping does not always increase performance (in certain situations it will actually be slower than a non-RAID setup), but in most situations it will yield a significant improvement in performance."[4]

RAID 1[edit]

Diagram of a RAID 1 setup
An exact copy (or mirror) of a set of data on two disks. This is useful when read performance or reliability is more important than data storage capacity. Such an array can only be as big as the smallest member disk. A classic RAID 1 mirrored pair contains two disks.[5]

RAID 2[edit]

RAID Level 2
RAID 2 stripes data at the bit (rather than block) level, and uses a Hamming code for error correction. The disks are synchronized by the controller to spin at the same angular orientation (they reach Index at the same time), so it generally cannot service multiple requests simultaneously. Extremely high data transfer rates are possible. This is the only original level of RAID that is not currently used.[6][7]
All hard disks eventually implemented Hamming code error correction. This made RAID 2 error correction redundant and unnecessarily complex. This level quickly became useless and is now obsolete. There are no commercial applications of RAID 2.[6][7]

RAID 3[edit]

Diagram of a RAID 3 setup of 6-byte blocks and two parity bytes, shown are two blocks of data in different colors.
RAID 3 uses byte-level striping with a dedicated parity disk. RAID 3 is very rare in practice. One of the characteristics of RAID 3 is that it generally cannot service multiple requests simultaneously. This happens because any single block of data will, by definition, be spread across all members of the set and will reside in the same location. So, any I/O operation requires activity on every disk and usually requires synchronized spindles.
This makes it suitable for applications that demand the highest transfer rates in long sequential reads and writes, for example uncompressed video editing. Applications that make small reads and writes from random disk locations will get the worst performance out of this level.[7]
The requirement that all disks spin synchronously, a.k.a. lockstep, added design considerations to a level that didn't give significant advantages over other RAID levels, so it quickly became useless and is now obsolete.[6] Both RAID 3 and RAID 4 were quickly replaced by RAID 5.[8] RAID 3 was usually implemented in hardware, and the performance issues were addressed by using large disk caches.[7]

RAID 4[edit]

Diagram of a RAID 4 setup with dedicated paritydisk with each color representing the group of blocks in the respective parity block (a stripe)
RAID 4 uses block-level striping with a dedicated parity disk.
In the example on the right, a read request for block A1 would be serviced by disk 0. A simultaneous read request for block B1 would have to wait, but a read request for B2 could be serviced concurrently by disk 1.
RAID 4 is very uncommon, but one enterprise level company that has previously used it is NetApp. The aforementioned performance problems were solved with their proprietary Write Anywhere File Layout(WAFL), an approach to writing data to disk locations that minimizes the conventional parity RAID write penalty. By storing system metadata (inodes, block maps, and inode maps) in the same way application data is stored, WAFL is able to write file system metadata blocks anywhere on the disk. This approach in turn allows multiple writes to be "gathered" and scheduled to the same RAID stripe—eliminating the traditional read-modify-write penalty prevalent in parity-based RAID schemes.[9]

RAID 5[edit]

Diagram of a RAID 5 setup with distributed paritywith each color representing the group of blocks in the respective parity block (a stripe). This diagram shows left asymmetric algorithm
RAID 5 comprises block-level striping with distributed parity. Unlike in RAID 4, parity information is distributed among the drives. It requires that all drives but one be present to operate. Upon failure of a single drive, subsequent reads can be calculated from the distributed parity such that no data is lost.[10] RAID 5 requires at least three disks.[11]
In comparison to RAID 4, RAID 5's distributed parity evens out the stress of a dedicated parity disk among all RAID members. Additionally, read performance is increased since all RAID members participate in serving of the read requests.[12]

RAID 6[edit]

Diagram of a RAID 6 setup, which is identical to RAID 5 other than the addition of a second parity block
RAID 6 extends RAID 5 by adding another parity block; thus, it uses block-level striping with two parity blocks distributed across all member disks.

Performance (speed)[edit]

RAID 6 does not have a performance penalty for read operations, but it does have a performance penalty on write operations because of the overhead associated with parity calculations. Performance varies greatly depending on how RAID 6 is implemented in the manufacturer's storage architecture—in software, firmware or by using firmware and specialized ASICs for intensive parity calculations. It can be as fast as a RAID-5 system with one fewer drive (same number of data drives).[13]

Implementation[edit]

According to the Storage Networking Industry Association (SNIA), the definition of RAID 6 is: "Any form of RAID that can continue to execute read and write requests to all of a RAID array's virtual disks in the presence of any two concurrent disk failures. Several methods, including dual check data computations (parity and Reed-Solomon), orthogonal dual parity check data and diagonal parity, have been used to implement RAID Level 6."[14]

No comments:

Post a Comment